Evaluation of non-supervised MALDI mass spectrometry imaging combined with microproteomics for glioma grade III classification.
نویسندگان
چکیده
An integrated diagnosis using molecular features is recommended in the 2016 World Health Organization (WHO) classification. Our aim was to explore non-targeted molecular classification using MALDI mass spectrometry imaging (MALDI MSI) associated to microproteomics in order to classify anaplastic glioma by integration of clinical data. We used fresh-frozen tissue sections to perform MALDI MSI of proteins based on their digestion peptides after in-situ trypsin digestion of the tissue sections and matrix deposition by micro-spraying. The generated 70μm spatial resolution image datasets were further processed by individual or global segmentation in order to cluster the tissues according to their molecular protein signature. The clustering gives 3 main distinct groups. Within the tissues the ROIs (regions of interest) defined by these groups were used for microproteomics by micro-extraction of the tryptic peptides after on-tissue enzymatic digestion. More than 2500 proteins including 22 alternative proteins (AltProt) are identified by the Shotgun microproteomics. Statistical analysis on the basis of the label free quantification of the proteins shows a similar classification to the MALDI MSI segmentation into 3 groups. Functional analysis performed on each group reveals sub-networks related to neoplasia for group 1, glioma with inflammation for group 2 and neurogenesis for group 3. This demonstrates the interest on these new non-targeted large molecular data combining both MALDI MSI and microproteomics data, for tumor classification. This analysis provides new insights into grade III glioma organization. This specific information could allow a more accurate classification of the biopsies according to the prognosis and the identification of potential new targeted therapeutic options. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
منابع مشابه
Imaging mass spectrometry identifies prognostic ganglioside species in rodent intracranial transplants of glioma and medulloblastoma
Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MALDI-MSI) allows us to investigate the distribution of lipid molecules within tissues. We used MALDI-MSI to identify prognostic gangliosides in tissue sections of rat intracranial allografts of rat glioma and mouse intracranial xenografts of human medulloblastoma. In the healthy adult rodent brain, GM1 and GD1 were ...
متن کاملAltered Expression of Epidermal Growth Factor Receptor (EGFR) in Glioma
EGFR is a key molecule in cancer cells. EGFR signaling was shown to promote tumor cell proliferation and survival, invasion and angiogenesis and mediate resistance to treatment, including ionizing radiation in preclinical models. We extracted proteins from astrocytoma (III and IV) oligodendroglioma(IV) tumors and normal brain tissues and then evaluated the protein purity by Bradford test ...
متن کاملCombined Mass Spectrometry Imaging and Top-down Microproteomics Reveals Evidence of a Hidden Proteome in Ovarian Cancer
BACKGROUND Recently, it was demonstrated that proteins can be translated from alternative open reading frames (altORFs), increasing the size of the actual proteome. Top-down mass spectrometry-based proteomics allows the identification of intact proteins containing post-translational modifications (PTMs) as well as truncated forms translated from reference ORFs or altORFs. METHODS Top-down tis...
متن کاملThe Clinical Trend and Prognosis of Patients with Brain Glioma
Background and Objectives: Gliomas are the most prevalent primary brain tumors. The purpose of this retrospective cohort study was evaluation of clinical trend and prognosis of patients with brain glioma and effective factors in prognosis. Materials and Methods: Hundred and forty-five patients with supratentorial brain glioma, treated in Shahid Mostafa Khomeini & Hazrat-e-...
متن کاملNanoLC-MS coupling of liquid microjunction microextraction for on-tissue proteomic analysis.
Mass spectrometry (MS)-based microproteomics on localized regions of tissue sections was achieved by direct coupling of liquid microjunction microextraction with a nanoscale liquid chromatography-tandem MS, resulting in the identification of >500 protein groups from a region as small as 250μm in diameter representing only a few hundred of cells. The method was applied on the examination of beni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1865 7 شماره
صفحات -
تاریخ انتشار 2017